Molecular characterization of the Acremonium chrysogenum cefG gene product: the native deacetylcephalosporin C acetyltransferase is not processed into subunits.
نویسندگان
چکیده
Constructions starting at each of the three in-frame ATG codons of the Acremonium chrysogenum cefG gene (Met1, Met46 and Met60) were expressed in Escherichia coli, obtaining proteins of 49, 44 and 43 kDa, respectively. All three proteins showed deacetylcephalosporin C (DAC) acetyltransferase activity. The native A. chrysogenum DAC acetyltransferase was purified to electrophoretic homogeneity by immunoaffinity chromatography. It showed a molecular mass of 50 kDa by filtration in calibrated Sephadex G-75 SF or Superose 12 (FPLC) columns. The N-terminal end of the pure DAC acetyltransferase was Met-Leu-Pro-Ser-Ala-Gln-Val-Ala-Arg-Leu, which matched perfectly the deduced amino acid sequence starting at Met1. The putative alpha- and beta-subunits of DAC acetyltransferase were also obtained in E. coli but showed no enzymic activity either separately or in combination. Immunoblotting (Western) analysis revealed that the 50 kDa DAC acetyltransferase showed high protein levels in A. chrysogenum cultures at 72 and 96 h and decreased sharply thereafter, but in all cases no detectable processing of the enzyme into subunits was found. Three different A. chrysogenum strains (including the wild-type Brotzu strain and two high-cephalosporin-producing mutants) showed the same unprocessed 50 kDa DAC acetyltransferase. The non-producer mutant ATCC 20371 showed no DAC acetyltransferase protein band but formed a normal transcript of 1.4 kb.
منابع مشابه
Molecular regulation of beta-lactam biosynthesis in filamentous fungi.
The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynt...
متن کاملC-terminus mutations of Acremonium chrysogenum deacetoxy/deacetylcephalosporin C synthase with improved activity toward penicillin analogs.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C (DAOC) and the hydroxylation of the latter to deacetylcephalosporin C (DAC). Three residues N305, R307 and R308 located in close proximity to the C-terminus of acDAOC/DACS were each mutated to leucine. Th...
متن کاملStudy on genetic engineering of Acremonium chrysogenum, the cephalosporin C producer
Acremonium chrysogenum is an important filamentous fungus which produces cephalosporin C in industry. This review summarized the study on genetic engineering of Acremonium chrysogenum, including biosynthesis and regulation for fermentation of cephalosporin C, molecular techniques, molecular breeding and transcriptomics of Acremonium chrysogenum. We believe with all the techniques available and ...
متن کاملRegulation and compartmentalization of β‐lactam biosynthesis
Penicillins and cephalosporins are β-lactam antibiotics widely used in human medicine. The biosynthesis of these compounds starts by the condensation of the amino acids L-α-aminoadipic acid, L-cysteine and L-valine to form the tripeptide δ-L-α-aminoadipyl-l-cysteinyl-D-valine catalysed by the non-ribosomal peptide 'ACV synthetase'. Subsequently, this tripeptide is cyclized to isopenicillin N th...
متن کاملCopurification and characterization of deacetoxycephalosporin C synthetase/hydroxylase from Cephalosporium acremonium.
Deacetoxycephalosporin C synthetase (expandase), which catalyzes ring expansion of penicillin N to deacetoxycephalosporin C (DAOC), has been stabilized in vitro and purified to near homogeneity from the industrially important fungus Cephalosporium acremonium. Throughout the purification, the expandase activity remained physically associated with and in a constant ratio of 7:1 to DAOC hydroxylas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 337 ( Pt 3) شماره
صفحات -
تاریخ انتشار 1999